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We propose a class of network models suited for negative-choice classification. Our models change
substantially the rejected states and do not change appreciably the accepted states.

PACS number(s): 87.10.+e

Most of the work on neural network modeling in re-
cent years concentrated on the so-called attractor neural
networks [1] (ANN) or on multilayered perceptrons [2, 3].
In both cases the ultimate task of learning is that the
network realizes a definite relation between input and
output states. In the case of ANN the stored patterns
are supposed to be stationary, in the case of multilayered
networks a definite output pattern should correspond to
a given input pattern. In many situations, ranging from
biology and medicine to high-energy physics [4] one deals,
however, with negative-choice classification when it is im-
portant to reject unwanted patterns. One can think, for
instance, of the production process in which bad or failed
products should be rejected. Another example is a deci-
sion process in which decisions leading to dangerous and
unwanted situations should be avoided. In many cases
it is also useful to have a device which transforms un-
acceptable inputs into more acceptable ones while pre-
serving some of their original features. In the process of
designing one often wants to avoid some unwanted fea-
tures allowing at the same time for possibly large diver-
sity of desired ones. In this paper we propose a class of
networks which may perform such tasks. Repeller neu-
ral networks (RNN) can be, for instance, realized in the
standard framework of ANN. Binary neurons follow then
in the absence of noise a standard updating rule

oi(t+1) =sgn | Y Jijo; (t)|, (1)

3 (#4)
where o; (t) = £1 denote their states, J;;’s are connec-
tions, and 7 = 1,..., N, where IV is the number of net-
work elements. We shall discuss here mainly synchronous

realizations of the dynamics described by Eq. (1).
The difference between RNN and ANN lies in the
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learning strategy. In the standard ANN one constructs
Jij so that desired patterns become stationary. For
Hamiltonian models, such as a Hopfield one, learning is
sometimes described as “digging holes in the energy land-
scape.” We propose an alternative approach to learning
that consists in forming “hills” and “mountains” in the
energy landscape. Patterns that correspond to the “tops
of the hills” will become unstable repellers and will be
substantially changed within one Monte Carlo (MC) step
per neuron. This, however, is not sufficient, since our
task is to control not only which states are rejected, i.e.,
strongly changed in the course of dynamics, but also to
control which are accepted (i.e., not changed or weakly
changed). To this aim we “fill” the energy landscape
with the ground creating large regions of the flat land-
scape. This is achieved by introducing a term describing
self-supportiveness in Eq. (1),

o (t+1) =sgn |so; (t) + Z Jijo; (1) ], (2)
7 (#)

where 0 < s < 1 is a new control parameter. Self-
supportiveness has been extensively used in various mod-
els of cellular automata [5]. We have, for instance, used it
in our theory of public opinion formation [6,7] to describe
a natural tendency of individuals to keep their opinions.

With this new control parameter the networks will act
as follows. First, they will not change or within a finite
time change very weakly accepted states, i.e., that are
sufficiently different from rejected configurations.

On the other hand, they will reject, i.e., change
abruptly, states which are sufficiently similar to a given
set of “unlearned” patterns. Note that we follow here
the idea of Refs. [8, 9], in which an unlearning strategy
was used to minimize the role of spurious memories in
the network.

How do we detect answers from the repeller networks?
This can be done using two methods

(1) First, by looking at the overlap of the initial state
{0: (0)} with the “final” state {o; (7)}. Note that we con-
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sider here on purpose finite duration 7 of the dynamics.
In this way we are able to distinguish patterns simply
lying or slowly moving in the flat regions of the energy
landscape, for which ¢ = Y, 0;(0) o; (1) /N should be
close to 1, from those lying on “tops of the hills” for
which ¢ <« 1. Of course, our criterion is a convention
only, but as numerical simulations show it can be used in
an unambiguous way (see discussion below).

(2) An alternative method of detection that can be well
applied for not too large noise levels consists in monitor-
ing frequency of the neural flips in the initial phase of the
dynamics. We have developed such a method of detec-
tion in the context of “nervous” neural networks [10, 11],
and showed that it provides a very precise detection tool
already within a fraction of the MC step per neuron.

Let us now turn to the theory and start with the case
s = 0, i.e., with no self-supportiveness. Throughout this
paper we shall use the Hebbian rule for constructing J;;’s
but any other rule or algorithm could be used equally
well. The inversion of the energy landscape consists in
taking a minus sign in front of the standard expression

1§ Ko
Jij = —N ‘;Sl Ejv (3)

where ¢ = +1, for p = 1,...,p, and p = aN, denote
random rejected or unlearned patterns. For s = 0 the
model is Hamiltonian and its statistical mechanics can
be investigated along the lines of the seminal paper of
Amit, Gutfreund, and Sompolinsky [12]. We use the
replica method [13] and do not brake the replica symme-
try. The order parameters are the same as in Ref. [12],
i.e., the overlaps with &’s, m, = (3, &Y (0:)7 ) /N for
v = 1,...,k and some finite k, the Edwards—Anderson
order parameter ¢ = {(3_.(0;)2 ))/N, and the parameter
= (38 _k 1 mEMS) /N, which measures Gaussian cor-
relations between the noise in the local field for distinct
replicas ¢ and o. The symbol (), denotes here a thermal
average, whereas (()) denotes an average over statistics of
&’s.

Equations of state have a form similar to that in
Ref. [12]. We obtain thus for each v = 1,...,k

wrffeumligme )] o
{figme ) o

aq

1+B(1—q) (©)
Double brackets refer now to averaging over the normally
distributed Gaussian variable z, with the mean zero and
variance 1, while ¢ is the imaginary unit; 3 = 1/T denotes
the noise level.

It is easy to check that the above equations allow only
for solutions with m, = 0 for each v. There are two sta-
ble phases: a paramagnetic phase and a spin glass phase.
The paramagnetic phase is stable for T > 0 when a < 1
and for T > \/a—1 otherwise. This result might be inter-

r
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esting in itself, but unfortunately does not allow for using
this Hamiltonian model as a repeller neural network. For
a < 1 we have no control over which states are slowly or
rapidly varying. In the spin glass phase there are a lot
of stationary states and slowing down of the dynamics.
But, again, we do not have any control over which states
are slowly varying and which are not.

Therefore we turn to the case s # 0. That is, however,
a much more difficult task, since the problem becomes
non-Hamiltonian and has to be treated dynamically. We
have only succeeded in solving it in two cases: for a =
0 and arbitrary T, and in the limit of strongly diluted
networks with connectivity K <« N, but for K — oo.
In the latter case we have used the theory of Derrida,
Gardner, and Zippelius [14].

For a = 0, i.e., for finite p, the only order parameters
are m,’s, which self-average. The dynamics takes the
form

o; (t+1) =sgn |so; (t) — Z Eimy, (t) + 7 (1), (7

where 7; (t) denotes a white noise distributed in such a
way that (sgn[a + r (t)]),, = tanh (Ba). Let us consider
first the case when only one of the m,’s, say m; (de-
noted below as m), is nonzero and the noise vanishes.
Equation (7) then becomes

gi(t+1) = 0:(t)O(s —|m(t)])
—&isgn[m (1) ©(Im (¢) | - s), (8)

where ©O() denotes the unit step function. It indi-
cates that o’s do not change if |m (¢)| is small enough,
i.e., when a current configuration has sufficiently small
overlap with £! (and zero overlaps with other £’s). If
|m (t) | > s, o’s follow periodic oscillations changing their
sign in each step of the synchronous dynamics. Here we
have what we wanted: all states that are sufficiently dif-
ferent from £' and other £’s are stationary. All others
undergo maximal possible change in each MC step.

In the presence of the noise the equation for the order
parameter takes the form

m (t)

m(t+1) = ——=( tanh {B[s —m (¢)]}

+tanh {B[s + m (¢)]})
+%(tanh {Bls —m )]}
—tanh {B[s + m (¢)]}) . (9)

It is easy to check that the only stable fixed point solution
then corresponds to m = 0. One has to conclude that
the only stationary state is a paramagnetic state. But,
we stress that the model is not trivial, since it exhibits
a dynamical phase transition. Although the stationary
state does not change, its character changes from a stable
node to a stable focus as we increase the noise level 1/4.
For small m (t), Eq. (9) becomes m (¢t + 1) = I'm (¢), with

B

I'= tanh (ﬂs) — m .

(10)

We see that for large values of 3, I" differs from one only
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by an exponentially small correction. The dynamics in
this limit is very slow, and the reader will easily check
that this takes place for finite m (t) already, provided it
is smaller than s. In the high-noise limit (8 ~ 0), T’
becomes negative and equal to ~ 3 (s — 1). This is the
regime of “repeller” paramagnetic phase for which large
changes of the state occur in every step of the dynamics.
This phase is of course reminiscent of the T' = 0 periodic
state. The critical value of the control parameter 3 is
determined from sinh (28.s) = 28.. For s close to 1,

Be =

Note that when s is sufficiently small [s < s, with
sc +1 = In(1/s.)], the fixed point m = 0 might lose
its stability and the stable solution becomes a period 2
cycle, just as in the case of T = 0. This happens when I'
becomes equal to —1, i.e., for 8; < 8 < B2 < (., where
206; = 1+ exp(28;s) for ¢ = 1,2. Since the period 2
state is not of particular interest from a point of view of
applications of RNN, we limit our discussion to the case
of larger values of s only.

The dynamical phase transition that we encounter here
is very characteristic for systems with self-supportiveness
[6,7]. It does not mean much if we restrict our attention
to the final states of the dynamic only. For finite times,
however, it is always possible to take 8 and s sufficiently
large that within a prescribed accuracy the desired class
of states will not change appreciably, whereas the rest will
be rejected. The results discussed here have been con-
firmed in numerical simulations, performed by us with
networks consisting of 200 elements [15]. In the simu-
lations we have introduced random repeller states with
the help of the negative of the Hebbian connection ma-
trix. As initial state we took partially deformed repeller
states characterized by a macroscopic initial overlap with
the ancestor state go and practically vanishing overlaps
with other repellers. We have performed the simulations
several hundred times for a duration of ten Monte Carlo
steps per neuron. Simulations were performed at T = 0.
We measured the overlap g of the final state with the
initial state as a function of g¢ for several values of the
self-supportiveness s (see Fig. 1). For small go, ¢ >~ 1 as

+/2 (1 — s), whereas for small s, 8. ~ —In(s)/2s.
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FIG. 1. The overlap g of the final state with the initial

state as a function of the overlap go of the initial state with
the ancestor state.
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we expect. For go > s, ¢ becomes gradually decreasing
and becomes close to s as go reaches 1. The dependence
has a very well developed knick at s as it changes from
the constant to monotonically decreasing. This allows us
to introduce practically unambiguous criterion of distinc-
tion of accceptable and unacceptable states.

Obviously, the theory may be easily generalized to the
case of two or more nonvanishing overlaps m,. Partic-
ularly simple is the case of two nonvanishing overlaps,
which were equal initially. Such symmetric states remain
symmetric in the course of dynamics. Let us introduce
four dynamical order parameters:

me,x(t) = % >

o5 (). (11)

gl=+,g2=+
Obviously, m; = m4y4 — m__ + m4_ — m__, whereas
my = myy —m__ —my_ + m_g. Initially m; =

my = m(0), so that my4(0) — m__(0) = m(0), and
my_ = m_y. Denoting m(t) = myi(t) — m__(t),
m(t) = myy(t) + m__(t), n(t) = my_(t) — m_4(t),
(t) = my_(t) + m_4(t), we obtain the following dy-
namical equations, which generalize Eq. (9) to the case
of two nonvanishing symmetric overlaps:

mt+1) = " tanh (8]s — 2m (1]}

2
+tanh {B[s + 2m (¢)]})
+3 (tamh {B[s — 2m (9]}
—tanh {B[s + 2m (¢)]}), (12)

Mt +1) = 'hT(t)( tanh {8[s — 2m ()]}
+tanh {B[s +2m (¢)]}), (13)

n(t+1) = " anh (815~ 2n (1)
+tanh {8 [s + 2n (t)]})
+%(tanh {Bls—2m ()]}
—tanh {B[s + 2n ()]} ), (14)

A(t+1) = @( tanh {8[s — 2n ()]}
+tanh {8 (s + 2n (¢)]}). (15)

One easily sees that n(t) = A(t) = 0. m(t) decays also
to zero. For large values of 3 that decay is relatively fast
for m(t) > s/2. As soon as m(t) decreases below s/2,
the rate of decay of m(t) becomes exponentially small.
m(t) tends also toward zero, but its decay will become
exponentially slow for m(t) < s/2. The rate in the limit
of m(t) ~ 0 is given by the same expression as in Eq.
(10). We encounter again the same kind of dynamical
phase transition as in the previously discussed case that
occurs at the same critical value 8.. The only difference
is that in the case of single overlap the “accepted,” i.e.,
slowly varying states should have m(t) < s, whereas now
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“accepted” states have to be more strongly repelled from
the two repellers ¢! and ¢2 and have m(t) = my(t) =
mo(t) < s/2.

Let us now turn to the other limit—the strong di-
lution of the network. Generalization of the theory of
Derrida, Gardner, and Zippelius [14] to the case of net-
works with self-supportiveness has been recently done by
us [6, 7]. We consider here a network with connectivity
K <« N, but with K — oo. We restrict our discus-
sion to the case of T' = 0, since extension of this theory
to the case of finite T is straightforward. We shall also
restrict our discussion to configurations of the network
that have a nonvanishing overlap with one and only one
of the a K unlearned patterns, say £&. We assume there-
fore that o; (t) are uncorrelated for different ¢ and that
{&o; (t))) = m (t). The local field for K — oo becomes a
Gaussian process with the mean m (t) and the dispersion
a. The dynamics becomes thus

m (t+1) = m(£)(0(s — m () + Vaz]))
~(sgn [m.(t) + vaz] 0(m (1) + Vaz| - 5)),
(16)

where {( )) denotes average over normally distributed vari-
able z. Again, the only stable solution of Eq. (16) is m =
0. But we encounter once more the similar dynamical
phase transition, since for small m, m (¢t + 1) = I'm (¢),
with

T = erf (\/Lz—a) _ (%)1/2 exp (-}Z—?) . (17)

Once more, for a small (more precisely for s/ V2a > 1)
T differs from 1 only exponentially. In this regime we
deal with quasistable states. In the limit of large a we
enter the phase of the stable focus which is reminiscent
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of the a = 0 periodic orbit. Critical values of a are
a,~1/[6 (1 — s)] for s close to 1, and a, ~ —s2?/Ins for
s close to zero. The limit s — 1 is especially interest-
ing since we may then formally “unlearn” an unlimited
number of patterns in the repeller network. However,
in order to make the repeller network work [i.e., make
m (t + 1) /m (t) =~ 1] we have to take s/v/2a < 1, i.e., for
all practical purposes the critical value of a, for s — 1 is
of the order of 1. Nevertheless, for small enough a and
finite duration time of the dynamics we may always be
sure that states with m < O(s) will not change appre-
ciably, i.e., will be detected as accepted states. Again,
for small s the fixed point m = 0 might become unstable
and the stationary state becomes periodic, but we skip
the discussion of this regime for the same reasons as in
the case o = 0.

In concluding we would like to point out that with
our model we have formulated a paradigm of network
modeling, which we hope will turn out very useful for
negative-classification tasks. The major innovation of re-
peller neural networks consists in simultaneous introduc-
tion of unlearning and self-supportiveness. In the stan-
dard attractor networks it is important to control the size
of the basins of attraction of the remembered patterns.
In the present case of RNN it is equally important to
be able to control the size of basins of repulsion of un-
learned patterns, i.e., to control the size of the regions of
the configuration space that are unacceptable and should
be rejected by the networks. Self-supportiveness allows
for such control in a very efficient way.
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